Communications to the editor

SYNTHESIS OF 1-N-((s)-4-AMINO-2-HYDROXYBUTYRYL)-3', 4'-DIDEOXYNEAMINE

Sir:

As reported in a previous paper¹⁾, we have accomplished the synthesis of butirosin B2) starting from ribostamycin⁸⁾ via a cyclic carbamate intermediate. Butirosin B is active against most of organisms resistant to ribostamycin. This unique activity can be ascribed to the presence of an (s)-4-amino-2-hydroxybutyryl residue which prevents the binding of the neamine moiety to the enzyme phosphorylating the 3'-hydroxyl group. Recently the 1-N-((s)-4-amino-2hydroxybutyryl) derivative of kanamycin was reported by KAWAGUCHI et al.4) to be strongly antibacterial both to kanamycin-sensitive and resistant bacteria. Therefore, to prove the contribution of the residue attached to the amino group at C-1 of deoxystreptamine, we undertook to synthesize the title compound starting from 3', 4'-dideoxyneamine⁵).

The four amino groups of 3', 4'-dideoxyneamine were protected with benzyloxycarbonyl chloride in 70% methanol to give tetra-N-benzyloxycarbonylneamine (1) in a yield of 80%, $[\alpha]_{5}^{1}+45.4^{\circ}$ (c 2, chloroform), which was then treated with sodium hydride as described in a previous paper¹⁾. Compound 1 was dissolved in dry DMF and after displacement of the air in the reaction vessel with nitrogen, 3 molecular equivalents of sodium hydride were added, and the mixture was agitated in an ice bath for 4 hours. The resulting clear solution

was neutralized with acetic acid and poured into a mixture of a large amount of chloroformwater. The crude product obtained from the organic layer was purified by column chromatography with silica gel and chloroform-ethanol (20:1) to give tri-N-benzyloxycarbonyl-3', 4'-dideoxyneamine-1, 6-carbamate (2) in a yield of 62 %, mp $107 \sim 110^{\circ}$ C, $[\alpha]_{D}^{25} + 58^{\circ}$ (c 1.9, chloroform). ir: 1765 cm^{-1} (trans-fused cyclic carbamate⁶⁾). [Calcd. for $C_{87}H_{42}N_4O_{11}$: C 61.83, H 5.89, N 7.80; Found: C 61.92, H 5.99, N 7.67].

Selective hydrolysis of the cyclic carbamate to the free aminol was effected with barium hydroxide in aqueous dioxane as described in a previous paper1), and the resulting ninhydrinpositive product, 3, 2', 6'-tri-N-benzyloxycarbonyl-3', 4'-dideoxyneamine (3) was condensed with (s)-2-hydroxy-4-phthalimido-butyric acid by the method described in a previous paper¹⁾ 3, 2', 6'-tri-N-benzyloxycarbonyl-3', 4'dideoxy-1-N-((s)-2-hydroxy-4-phthalimidobutyryl) neamine (4) was obtained in a yield of 62 % from 2, mp 228~230°C (recrystallized from methanol), $[\alpha]_{D}^{22}+32^{\circ}$ (c 1.5, chloroform), ir: 1705, 1690, 1655, 1535 cm $^{-1}$. [Calcd. for C₄₈H₅₈- $N_5O_{14} \cdot H_2O$: C 61,20, H 5.89, N 7.43; Found: C 61.34, H 5.93, N 7.39].

Compound 4 was then treated with 4% hydrazine hydrate in 80% ethanol-dioxane (1:1) at 60°C for 2 hours to remove the phthaloyl group and then with palladium black and hydrogen in aqueous dioxane (1:1) to remove the benzyloxycarbonyl groups to give the final product, which was purified by a column of CM-Sephadex C-25 (NH₄+ form) with ammonia

Table 1.	Antibacterial s	spectra of	f 5 , 3	1, 4	'-dideoxy	neamine	and	neamine
----------	-----------------	------------	----------------	------	-----------	---------	-----	---------

	Minimal inhibitory concentration (mcg/ml)					
Test organisms*	5	3', 4'-Dideoxy- neamine	Neamine			
Staphylococcus aureus FDA 209P	3.12	6.25	6.25			
Sarcina lutea PCI 1001	25	50	>100			
Bacillus subtilis NRRL B-558	< 0.39	0.39	0.78			
Klebsiella pneumoniae PCI 602	6.25	25	12.5			
" type 22 #3038	12.5	25	>100			
Salmonella typhosa T-63	1.56	3.12	3.12			
Escherichia coli NIHJ	3.12	12.5	12.5			
″ K-12	3.12	6.25	6.25			
" " R-5	50	50	>100			
" " ML 1629	3.12	12.5	>100			
" ML 1630	3.12	12.5	> 100			
" " ML 1410	3.12	6.25	12.5			
" " R 81	12.5	25	>100			
" LA 290 R 55	3.12	6.25	6.25			
" " R 56	3.12	6.25	12.5			
" " " R 64	3.12	12.5	6.25			
" C 600 R 135	12.5	12.5	12.5			
" " W 677	3.12	6.25	6.25			
" JR 66/W 677	12.5	25	>100			
″ J 5 R 11–2	6.25	6.25	>100			
Pseudomonas aeruginosa A 3	6.25	25	> 100			
" No. 12	6.25	25	>100			
" GN 315	>100	>100	> 100			
" TI-13	6.25	25	>100			
" 99	25	50	>100			
Proteus rettgeri GN 311	25	50	100			
" GN 466	12.5	25	25			
Mycobacterium smegmatis ATCC 607**	6.25	25	12.5			

^{*} Agar dilution streak method (nutrient agar, 37°C, 18 hours).

 $(0\sim0.5\,\mathrm{N})$. At the concentration of 0.4 N ammonia, the desired product was eluted, and further treatment gave 1-N-((s)-4-amino-2-hydroxy-butyryl)-3', 4'-dideoxyneamine (5) as a monohydrate in a yield of 53 % from 4, $[\alpha]_{\mathrm{D}}^{22}+38^{\circ}$ (c 0.85, water), ir: 1650, 1560 cm⁻¹. Rf_{3',4'-dideoxyneamine} 0.47 (on peper chromatography with 1-butanol-pyridine-wate-acetic acid (6:4: 3:1)). [Calcd. for C₁₆H₃₈N₅O₆·H₂O: C 46.93, H 8.62, N 17.10; Found: C 46.92, H 8.52, N 17.24].

Retention of configuration at C-2 of the side residue in 5 was confirmed by acidic hydrolysis of the compound. By treatment of 5 as described in the literature²⁾ for butirosins A and B, (s)-4-

amino-2-hydroxybutyric acid, $[\alpha]_D^{e_0}$ —27° (c 1, water) (lit.²⁾ —28.2°) was isolated.

The synthetic 3', 4'-dideoxyneamine derivative (5) showed stronger antibacterial activity (Table 1) than that of the parent substance, 3',-4'-dideoxyneamine, against both sensitive and resistant bacteria.

Sumio Umezawa Daishiro Ikeda Tsutomu Tsuchiya

Department of Applied Chemistry, Faculty of Engineering, Keio University, Hiyoshi, Yokohama, Japan

^{** 48} hours.

HAMAO UMEZAWA

Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan

(Received February 13, 1973)

References

- IKEDA, D.; T. TSUCHIYA, S. UMEZAWA & H. UMEZAWA: Synthesis of butirosin B. J. Antibiotics 25: 741-742, 1972
- a) Woo, P.W.K.; H.W. DION & Q.R. BARTZ: Butirosins A and B, aminoglycosidic antibiotics.
 I. Structural units. Tetrahedron Letters 1971: 2617~2620, 1971
 - b) Woo, P. W. K.: Butirosins A and B, aminoglycosidic antibiotics. II. Mass spectrometric study. Tetrahedron Letters 1971: 2621~2624, 1971
 - c) Woo, P. W. K.; H. W. DION & Q. R. BARTZ:

- Butirosins A and B. aminoglycosidic antibiotics. III. Structure. Tetrahedron Letters 1971: 2625~2628, 1971
- AKITA, E.; T. TSURUOKA, N. EZAKI &. T. NIIDA: Studies on antibiotic SF-733, a new antibiotic. II. J. Antibiotics 23: 173~183, 1970
- KAWAGUCHI, H.; T. NAITO, S. NAKAGAWA & K. FUJISAWA: BB-K8, A new semisynthetic aminoglycoside antibiotic. J. Antibiotics 25: 695~708, 1972
- UMEZAWA, S.; T. TSUCHIYA, T. JIKIHARA & H. UMEZAWA: Synthesis of 3', 4'-dideoxyneamine active against kanamycin-resistant E. coli and P. aeruginosa. J. Antibiotics 24: 711~712, 1971
- 6) UMEZAWA, S.; Y. TAKAGI & T. TSUCHIYA: Studies on aminosugars. XXVI. A new method for the simultaneous protection of amino and hydroxyl groups in aminosugars and aminocyclitols. Bull. Chem. Soc. Japan 44: 1411~ 1415, 1971